基本放大電路實驗報告總結

本文已影響1.31W人 

基本放大電路實驗報告總結,很多人在生活中都會充滿好奇心,對所有東西都很好奇或者是不解,那麼大家都知道基本放大電路實驗報告總結是怎麼寫嗎,下面和小編一起來了解學習看看吧。

基本放大電路實驗報告總結1

1.理解多級直接耦合放大電路的工作原理與設計方法

2.熟悉並熟悉設計高增益的多級直接耦合放大電路的方法

3.掌握多級放大器性能指標的測試方法

4.掌握在放大電路中引入負反饋的方法

二、實驗預習與思考

1.多級放大電路的耦合方式有哪些?分別有什麼特點?

2.採用直接偶爾方式,每級放大器的工作點會逐漸提高,最終導致電路無法正常工作,如何從電路結構上解決這個問題?

3.設計任務和要求

(1)基本要求

用給定的三極管2SC1815(NPN),2SA1015(PNP)設計多級放大器,已知VCC=+12V, -VEE=-12V,要求設計差分放大器恆流源的射極電流IEQ3=1~1.5mA,第二級放大射極電流IEQ4=2~3mA;差分放大器的單端輸入單端輸出不是真電壓增益至少大於10倍,主放大器的不失真電壓增益不小於100倍;雙端輸入電阻大於10kΩ,輸出電阻小於10Ω,並保證輸入級和輸出級的直流點位爲零。設計並仿真實現。

三、實驗原理

直耦式多級放大電路的主要涉及任務是模仿運算放大器OP07的等效內部結構,簡化部分電路,採用差分輸入,共射放大,互補輸出等結構形式,設計出一個電壓增益足夠高的多級放大器,可對小信號進行不失真的放大。

1.輸入級

電路的輸入級是採用NPN型晶體管的恆流源式差動放大電路。差動放大電路在直流放大中零點漂移很小,它常用作多級直流放大電路的前置級,用以放大微笑的直流信號或交流信號。

典型的差動放大電路採用的工作組態是雙端輸入,雙端輸出。放大電路兩邊對稱,兩晶體管型號、特性一致,各對應電阻阻值相同,電路的共模抑制比很高,利於抗干擾。 該電路作爲多級放大電路的輸入級時,採用vi1單端輸入,uo1的單端輸出的工作組態。 計算靜態工作點:差動放大電路的雙端是對稱的,此處令T1,T2的相關射級、集電極電流參數爲IEQ1=IEQ2=IEQ,ICQ1=ICQ2=ICQ。設UB1=UB2≈0V,則Ue≈-Uon,算出T3的ICQ3,即爲2倍的IEQ也等於2倍的ICQ。

此處射級採用了工作點穩定電路構成的恆流源電路,此處有個較爲簡單的確定工作點的'方法:

因爲IC3≈IE3,所以只要確定了IE3就可以了,而IE3 UR4UE3 ( VEE), R4R4

UE3 UB3 Uon (VCC ( VEE)) R5 Uon R5 R6

uo1 ui1採用ui1單端輸入,uo1單端輸出時的增益Au1

2.主放大級 (Rc//RLRL (P//)1 Rb rbeR1 rbe

本級放大器採用一級PNP管的共射放大電路。由於本實驗電路是採用直接耦合,各級的工作點互相有影響。前級的差分放大電路用的是NPN型晶體管,輸出端uo1處的集電極電壓Uc1已經被擡得較高,同時也是第二級放大級的基極直流電壓,如果放大級繼續採用NPN型共射放大電路,則集電極的工作點會被擡得更高,集電極電阻值不好設計,選小了會使放大倍數不夠,選大了,則電路可能飽和,電路不能正常放大。對於這種情況,一般採用互補的管型來設計,也就是說第二級的放大電路用PNP型晶體管來設計。這樣,當工作在放大狀態下,NPN管的集電極電位高於基極點位,而PNP管的集電極電位低於基極電位,互相搭配後可以方便地配置前後級的工作點,保證主放大器工作於最佳的工作點上,設計出不失真的最大放大倍數。

採用PNP型晶體管作爲中間主放大級並和差分輸入級鏈接的參考電路,其中T4爲主放大器,其靜態工作點UB4、UE4、UC4由P1、R7、P2決定。

差分放大電路和放大電路採用直接耦合,其工作點相互有影響,簡單估計方式如下:

,UC4 VEE IC4 RP2 UE4 VCC IE4 R7, UB4 UE4 Uon UE4 0.7(硅管)

由於UB4 UC1,相互影響,具體在調試中要仔細確定。 此電路中放大級輸出增益AU2

3.輸出級電路

輸出級採用互補對稱電路,提高輸出動態範圍,降低輸出電阻。

其中T4就是主放大管,其集電極接的D1、D2是爲了克服T5、T6互補對稱的交越失真。本級電路沒有放大倍數。

四、測試方法

用Multisim仿真設計結果,並調節電路參數以滿足性能指標要求。給出所有的仿真結果。

電路圖如圖1所示 uo2 Rc uo1Rb rbe

仿真電路圖

圖1靜態工作點的測量:

測試得到靜態工作點IEQ3,IEQ4如圖2所示,符合設計要求。

圖2 靜態工作點測量

輸入輸出端電壓測試:

測試差分放大器單端輸入單端輸出波形如圖3,輸入電壓爲VPP=4mV,輸出電壓爲VPP=51.5mV得到差分放大器放大倍數大約爲12.89倍。放大倍數符合要求。

基本放大電路實驗報告總結

圖3 低電壓下波形圖 主放大級輸入輸出波形如圖4

圖4 主放大級輸入輸出波形圖

如圖所示輸入電壓爲VPP=51.5mV,輸出電壓爲VPP=6.75V放大倍數爲131.56倍。 整個電路輸入輸出電壓測試如圖

基本放大電路實驗報告總結 第2張

圖5 多級放大電路輸入輸出波形圖

得到輸入電壓爲VPP=4mV,輸出電壓爲VPP=4.29V,放大倍數計算得到爲1062倍 實驗結論:

本電路利用差動放大電路有效地抑制了零點漂移,利用PNP管放大級實現主放大電路,利用互補對稱輸出電路消除交越失真的影響,設計並且測試了多級放大電路,得到放大倍數爲1000多倍,電路穩定工作。

基本放大電路實驗報告總結2

實驗一:儀器放大器設計與仿真

一. 實驗目的

1.掌握儀器放大器的設計方法

2.理解儀器放大器對共模信號的抑制能力

3.熟悉儀器放大器的調試方法

4.掌握虛擬儀器庫中關於測試模擬電路儀器的使用方法,如示波器、毫伏表信號發生器等虛擬儀器的使用

二. 實驗原理

儀器放大器是用來放大差值信號的高精度放大器,它具有很大的共模抑制比,極高的輸入電阻,且其增益能在大範圍內可調。儀器放大器原理圖如下所示:

基本放大電路實驗報告總結 第3張

儀器放大器由三個集成運放構成。其中,U3構成減法電路,即差值放大器,U1、U2各對其相應的信號源組成對稱的同相放大器,且R1=R2,R3=R5,R4=R6。 令R1=R2=R時,則

Vo2—Vo1=(1+2R/Rg)(Vi2—Vi1)

U3是標準加權減法器,Vo1、Vo2是其輸入信號,其相應輸出電壓 Vo=—(R6/R5)Vo2+R4/(R3+R4)Vo1(1+R6/R5)

由於R3=R5=R4=R6=R,因而

Vo=Vo1—Vo2=(1+2R/Rg)(Vi1—Vi2)

儀器放大器的差值電壓增益

Avf=Vo/(Vi1—Vi2)=1+2R/Rg

因此改變電阻的值可以改變儀器放大器的差值電壓增益,此儀器放大器的增益是正的。

三. 實驗內容

1.按照上述原理圖構成儀器放大器,具體指標爲:

(1)當輸入信號Ui=2sinwt(mV)時,輸出電壓信號Uo=0.4sinwt(mV),Avf=200,f=1kHz

(2)輸入阻抗要求Ri>1MΩ

2.用虛擬儀器庫中關於測試模擬電路儀器,按設計指標進行調試。

3.記錄數據並進行整理分析

四. 實驗步驟

按下圖連好電路,並設置函數信號發生器,輸出正弦,頻率爲1kHz,幅度爲2mV;用示波器觀察波形變化

基本放大電路實驗報告總結 第4張

其中Avf=1+2R/Rg≈200,輸入的爲差模信號2mV符合實驗要求

五.實驗結果

基本放大電路實驗報告總結 第5張

如圖示波器CH1、CH2、CH3分別是Vi1、Vi2、Vo, 由圖可知輸出Vo=0.4sinwt(V), 且和Vi1同相

六.實驗心得體會

從這次實驗中我學會了multisim的基本操作方法,理解了儀器放大器的原理,而且通過仿真實驗更加熟悉了一些常見電路元件的功能

相關內容

熱門精選